Privacy-preserving Network Provenance
نویسندگان
چکیده
Network accountability, forensic analysis, and failure diagnosis are becoming increasingly important for network management and security. Network provenance significantly aids network administrators in these tasks by explaining system behavior and revealing the dependencies between system states. Although resourceful, network provenance can sometimes be too rich, revealing potentially sensitive information that was involved in system execution. In this paper, we propose a cryptographic approach to preserve the confidentiality of provenance (sub)graphs while allowing users to query and access the parts of the graph for which they are authorized. Our proposed solution is a novel application of searchable symmetric encryption (SSE) and more generally structured encryption (SE). Our SE-enabled provenance system allows a node to enforce access control policies over its provenance data even after the data has been shipped to remote nodes (e.g., for optimization purposes). We present a prototype of our design and demonstrate its practicality, scalability, and efficiency for both provenance maintenance and querying.
منابع مشابه
Preserving privacy in shared provenance data
Provenance management still lacks robust models for sharing provenance data between multiple parties while keeping parts of it private to the owner. This limits the potential for provenance dissemination, which is a critical step in enabling data sharing amongst partners with limited a priori mutual trust. In turn, this has a negative impact on data-intensive science and its associated research...
متن کاملA centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملAn Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling
In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...
متن کاملPreserving Module Privacy in Workflow Provenance
We study the problem of providing workflow data provenance without revealing the functionality of any module. We develop a model that formalizes the notion of privacy of modules embedded in a workflow structure as a natural extension of privacy of standalone modules. Our model shows that by hiding a small amount of carefully chosen data, one can ensure privacy of all modules over an unbounded n...
متن کاملProvenance: The Missing Component of the Semantic Web for Privacy and Trust
Data on the Semantic Web currently does not have any standardized or any de-facto agreed upon way to exhibit provenance information, yet provenance is the foundation for any reasonable model of privacy and trust. Yet, currently every RDF triple does not have any coherent way of storing provenance information on the Semantic Web. We present the hypothesis that provenance is by far the most impor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PVLDB
دوره 10 شماره
صفحات -
تاریخ انتشار 2017